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Abstract 

Single-cell RNA sequencing (scRNA-seq) has facilitated the study of gene expression and 

the development of new tools to quantify transcript in individual cells. Yet, most of these 

methods have low sensitivity and accuracy. Here we present SCALPEL, a Nextflow-based 

tool to quantify and characterize transcript isoforms at the single-cell level using standard 3’ 

based scRNA-seq data. SCALPEL predictions have higher sensitivity than other tools and 

can be validated experimentally. We have used SCALPEL to study the changes in isoform 

usage during mouse spermatogenesis and in the differentiation of induced pluripotent stem 

cells (iPSCs) to neural progenitors. These analyses allow the identification of novel cell 

populations that cannot be defined using conventional gene expression profiles, confirm 
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known changes in 3’ UTR length during cell differentiation, and identify cell-type specific 

miRNA signatures controlling isoform expression in individual cells. Together, our work 

highlights how SCALPEL expands the current scRNA-seq toolset to explore post-

transcriptional gene regulation in individual cells from different species, tissues, and 

technologies to investigate the variability and the specificity of gene regulatory mechanisms 

at the single-cell level. 

Main 

Alternative polyadenylation (APA) is a general mechanism of post-transcriptional regulation 

that significantly contributes to the diversification of gene expression patterns under diverse 

physiological and pathological conditions1. APA defines the end of transcripts by selecting 

one of the available polyA sites (PAS) at the 3’ end of genes, resulting in the generation of 

multiple mature RNA isoforms from the same pre-mRNA2. These isoforms may have 

different coding regions or contain distinct 3’ untranslated regions (3’ UTRs), which contain 

regulatory elements influencing mRNA stability, localization, and translational efficiency3–5. 

Transcriptomic studies have demonstrated that APA is highly regulated in a tissue specific 

manner6 and plays a crucial role in various biological processes, including cellular 

differentiation7, development8–10, and response to environmental cues11. Alterations in APA 

patterns have been linked to various diseases, where they can lead to aberrant gene 

expression and even cancer12,13. 

The development of high-throughput single-cell transcriptomics technologies (scRNA-seq) 

has led to the emergence of computational methods to characterize the transcriptomic profile 

of thousands of individual cells in a single experiment14. While these methods are mainly 

used to quantify gene expression, 3’ tag-based scRNA-seq protocols such as Drop-seq15 or 

10x genomics provide opportunities to study 3’ end isoform diversity. Currently, only a few 

computational tools allow to study isoform diversity generated by APA in scRNA-seq data 

and most of them face significant drawbacks. They often fail to detect polyadenylation sites 
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(PAS) with low read coverage due to the sparse nature of single-cell data and they lack the 

precision needed to accurately pinpoint the exact PAS locations, leading to potential 

misidentification and incomplete characterization of isoform diversity16–19. Alternative 

methods based on isoform quantification such as scUTRquant20 have been shown to be 

more powerful in quantifying transcript diversity from scRNA-seq data. Yet, the main power 

of this method relies on an improved curated 3’ end annotation that is not available for most 

species. 

Here, we present SCALPEL, a Nextflow workflow21 to quantify isoform expression using 

commonly used 3’ tag-based scRNA-seq data. SCALPEL workflow is divided into three main 

modules (Fig 1a). In the first module, raw sequencing data and annotation files are 

processed to perform bulk quantification of the annotated isoforms. These isoforms are then 

truncated and collapsed, giving rise to a set of distinct isoforms with different 3’ ends for 

quantification at single-cell resolution. In the second module, scRNA-seq reads are mapped 

on the set of selected isoforms and reads coming from pre-mRNAs or resulting from internal 

priming (IP) events are discarded. In the last module, isoforms are quantified in individual 

cells and an isoform digital gene expression matrix (iDGE) is generated (Fig. S1). The iDGE 

can be processed to perform downstream single-cell level analyses such as dimensionality 

reduction, clustering, marker discovery and trajectory inference. Furthermore, it can also be 

used to study differential isoform usage (DIU) and visualize isoform coverage using 

additional functions included in SCALPEL repository. 

We used SCALPEL to investigate changes in isoform usage using a publicly available 

dataset on mouse sperm cell differentiation generated using 10x genomics platform22. In this 

dataset, SCALPEL identified 39,241 isoforms in 16,679 genes that were used for 

downstream analyses such as dimensionality reduction and clustering. The use of isoforms 

instead of genes for clustering analysis results in the identification of the same three main 

cell populations as using standard gene-based single-cell quantifications: elongated 

spermatids (ES), round spermatids (RS), and spermatocytes (SC) (Fig. 1b ;  94% agreement 
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in cell assignments). However, using a higher clustering resolution, we can identify new cell 

populations that cannot be identified using only gene expression-based approaches (Fig. 

1c). We identified a new cell population of RS cells, RS6, that could not be distinguished 

using gene-based clustering (Fig. 1d, S2 a,b). GO term enrichment analysis using RS6 

isoforms marker genes (Supplementary Table 1) identified biological processes associated 

to cilium organization and organelle assembly (Fig. S2c), which are essential processes for 

the differentiation and maturation of RS cells 23,24. DIU analysis across RS populations 

identified genes with differential isoform usage in RS6 cells, including changes in Dnah3 and 

Spaca1, which are genes important for the morphological changes during sperm cell 

maturation such as the axonema and the flagellum (Fig. S2 d,e)25,26. Together, these results 

suggest that RS6 cell population corresponds to elongating spermatids27, an intermediate 

population state between RS and ES populations previously morphologically described in 

the literature that cannot be identified using single-cell gene expression profiles. 

Given that isoform quantification is useful to identify new cell populations, we investigated 

how informative is isoform expression to define cell type identity. For this purpose, we 

computed for each gene its information content defined as the sum of the information from 

each of its isoforms28. The higher the information content of a gene, the more cell-type-

specific the expression of its isoforms is. Using this approach, we noted that most genes had 

clear cell type specific expression bias (Fig. 1e). Manual inspection showed that in many 

cases all isoforms from the same gene showed similar expression changes across cell 

types, indicating that gene information content mainly reflects transcriptional changes (Fig. 

1f). Thus, we used a chi-square test to identify genes in which the isoform usage changes 

across conditions, reflecting a regulation at the post-transcriptional level. Using this 

approach, we identified 4,214 genes displaying changes in isoform usage across cell types 

(Fig. 1e, red dots; Supplementary Table 2). One of these genes is Smg7, a gene that plays a 

crucial role in male germ cell differentiation in mice through its role in nonsense-mediated 

mRNA decay25. We observed a switch in isoform usage during cell differentiation where the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.21.600022doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.21.600022
http://creativecommons.org/licenses/by-nc-nd/4.0/


long isoform of Smg7 gene (Smg7-202) is progressively replaced by a shorter isoform 

(Smg7-203) (Fig. 1g). 

Previous studies have shown that APA results in global 3’ UTR shortening during sperm cell 

differentiation29,30. Thus, we used SCALPEL predictions to assess if the observed changes in 

3’UTR length reflected a coordinated shortening during sperm cell differentiation. We used 

the isoform quantification data to order cells according to pseudotime and measured the 

average 3’ UTR length of cells. In agreement with previous studies, we observed that 

overall, 3’ UTR length shortens while cells differentiate (Fig. 1h), indicating that SCALPEL 

predictions recapitulate known changes in 3’ UTR length during mouse spermatogenesis.  

We next tested the performance of SCALPEL on a shallower dataset generated with Drop-

seq platform. We profiled human induced pluripotent stem cells (iPSCs) and neural 

progenitor cells (NPCs) since it is known that APA changes significantly during 

neurogenesis31 and that miRNA regulation is very important in this process32–34. In this 

shallower dataset, SCALPEL quantified 59,796 isoforms in 18,617 genes and more than 

10,000 genes with two or more isoforms. Isoform and gene-based analyses identified the 

same cell populations (Fig 2a). Differential isoform usage analysis identified 1,883 DIU 

genes with significant isoform expression changes between iPSCs and NPCs 

(Supplementary Table 3), highlighting that the drop in sequencing depth does not affect 

SCALPEL execution. 

Given that isoforms with different 3’ends could contain different regulatory elements such 

miRNA target sites2, and that miRNAs usually downregulate their target RNAs35, we 

investigated if changes in isoform usage in NPCs compared to iPSCs was driven by miRNA 

function. To address this question, we downloaded the predicted miRNA target sites on the 

human genome from the MBS database36 and identified all isoforms targeted by miRNAs 

previously associated to NPCs34 (Supplementary Table 4). To investigate of miRNAs 

contribute to regulate isoform expression changes in NPCs, we compared the fold change 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.21.600022doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.21.600022
http://creativecommons.org/licenses/by-nc-nd/4.0/


distribution of isoforms containing miRNA target sites of miRNAs expressed in NPCs with 

those of non-targeted isoforms from the same genes. This analysis identified significant 

downregulation of isoforms targeted by let-7b, miR-124, miR-128, miR-199a, and miR-34 in 

NPCs compared to iPSCs (FDR < 0.05; Fig. 2b and Supplementary Table 5). This result 

suggests that miRNAs can explain some of the isoform expression changes predicted by 

SCALPEL during the differentiation of iPSCs to NPSc. 

Considering that these two cell types can be easily distinguished experimentally, we decided 

to use this dataset to experimentally validate SCALPEL predictions. To this end, we selected 

six genes predicted to have changes in isoform usage by SCALPEL across cell types and 

validated the isoforms expressed by these genes in NPCs and iPSCs using 3’RACE. This 

analysis validated the changes in isoform usage in two of the six genes (Fig. 2c-f) and 

detected all isoforms predicted by SCALPEL in two of the remaining four genes (Fig. S3).  

Finally,  we benchmarked SCALPEL performance against existing tools developed to 

quantify APA in scRNA-seq data20,37–41. Considering the underlying quantification strategy, 

these methods can be divided into peak-calling based tools (Sierra, scAPA, scAPAtrap, 

SCAPTURE, and scDapars), and isoform quantification tools (scUTRquant) (Supplementary 

Table 6). Following the quantification of peaks or isoforms according to the default 

parameters of each tool, we performed DIU analysis across pairs of cell types (Fig. S4a). In 

the case of scUTRquant20, which uses an extended curated 3’ UTR annotation (3’ UTRome), 

we performed the benchmarking using both the 3’ UTRome (scUTRquant) and the same 

annotation as the other tools (scUTRquant*). Overall, our analyses show a clear difference 

in sensitivity between peak and isoform-based methods (Fig. 3a). Peak-based methods 

quantified fewer genes and isoforms than isoform-based methods, which all showed similar 

sensitivities. Most of the sensitivity differences between peak and isoform tools can be 

explained by the constraints of the prediction methods. For instance, the low number of 

isoforms quantified by scDapars42 and scAPA19 can be explained because these tools only 

predict PAS in annotated 3’ UTRs. In contrast, the large number of peaks detected by 
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scAPAtrap17 is explained because its predictions are not restricted to the gene annotations 

(Supplementary Tables 7,8).  

Next, we identified DIU genes for each pair of cell types. SCALPEL identified the highest 

number of DIU genes, closely followed by scUTRquant and scAPAtrap (Fig. 3b). This higher 

sensitivity is not driven by the quantification of lowly expressed genes, as most DIU genes 

are highly expressed (top 50%; Fig. 3c and S4b,e). Here, it is important to note that the 

number of DIU genes detected by scUTRquant using the standard gene annotation 

(scUTRquant*) is clearly reduced, indicating that the higher sensitivity of scUTRquant can be 

directly attributed to the use of an extended annotation (3’ UTRome) and not to the algorithm 

per se. Finally, we investigated the agreement in the prediction of genes with differential 

peak or isoform usage across tools. We observed a substantial overlap in the predictions of 

SCALPEL with other tools, with more than 70% of SCALPEL predictions supported by one 

or more tools (Fig. 3d,e; Fig. S4b,e). SCALPEL and scUTRquant showed the highest 

agreement on the identified DIU genes across the cell types (Fig. S4c,f,j-l). When performing 

the benchmark on the neuronal dataset, SCALPEL and scAPAtrap showed higher sensitivity 

in the identification of DIU genes while keeping a high degree of agreement with other tools 

(Fig. S4g-i, m). In this case, although scUTRquant quantified a high number of isoforms 

(40,002) and genes with multiple isoforms (10,481), only 246 DIU genes were identified 

between NPCs and iPSCs (Fig. S4 g-i). This drop in the number of detected DIU genes is 

likely arising from stringent default parameters which discard genes expressed in a few cells 

(minCellsPerGene=50).  

Finally, we decided to compare the performance of SCALPEL in terms of execution 

requirements and runtime. SCALPEL run time and memory usage is comparable or better 

than most of the tools analyzed, and only scUTRquant is faster and more memory efficient 

than SCALPEL. Yet, this can be directly linked to the presence of an already processed 
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annotation as both memory and execution time increase when no 3’ UTRome is provided to 

scUTRquant (scUTRquant*, Fig. 3f, Supplementary Tables 9, 10). 

Conclusions 

In this manuscript we have presented SCALPEL, a new tool for sensitive isoform 

quantification and visualization using conventional 3’ based scRNA-seq data. Comparison of 

SCALPEL to other existing tools shows that SCALPEL quantifies more isoforms and detects 

more genes with changes in isoform usage (Fig. 3a). While we do not have a ground truth 

dataset to assess the accuracy of the predictions, we show that SCALPEL predictions have 

a high agreement with that of the other tools (Fig. 3d,e and Fig. S4), which has commonly 

been used as a measure of accuracy in these cases, and that SCALPEL’s predictions can 

be validated experimentally (Fig. 2 d, f, Fig. S3).  

We demonstrate that the iDGE provided by SCALPEL can be used to perform standard 

single-cell analysis such as dimensionality reduction, clustering and pseudotime analysis 

(Fig. 1 b,c,h and Fig. 2a). We also show that isoform quantification can be used to gain new 

insights about cell populations and identify, for instance, novel cell states that cannot 

distinguished using standard single-cell gene quantification data. (Fig. 1c and Fig S2). 

Furthermore, we highlight how SCALPEL predictions can be used to investigate 

mechanisms of gene regulation at the single-cell level. SCALPEL predictions recapitulate 

known changes in 3’ UTR length during cell differentiation (Fig. 1h) and reflect miRNA 

function at the single-cell level, as changes in isoform usage across cell types can by directly 

linked to the presence of cell type specific miRNAs (Fig. 2b). Together, our work highlights 

how SCALPEL expands the current scRNA-seq toolset to explore post-transcriptional gene 

regulation in individual cells from different species, tissues, and technologies to advance our 

knowledge on gene regulation from the bulk to the single-cell level. 

Methods 
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Annotation preprocessing 

3’ based scRNA-seq protocols use oligo(dT)s to capture polyadenylated RNAs, which 

introduces a bias in the location of reads towards the 3’ end of the RNAs (Fig. S5). Thus, we 

truncated the annotated isoforms in the existing annotation and restricted the quantification 

to isoforms that are different at the 3’ end. Using GENCODE43 annotation as reference, we 

truncated all isoforms to include the last 600 nucleotides of spliced sequence from their 3’ 

end, which is the region that displays coverage by the 3’ tag-based scRNA-seq data (Fig. 

S5). Then, we collapsed truncated isoforms with exact intron/exon boundaries and fewer 

than 30 nucleotides differences in their 3’ end coordinates. When multiple isoforms were 

collapsed, we kept the name of the isoform having the higher expression according to 

pseudobulk quantification. For this purpose, we used salmon quant v0.1444 with default 

parameters to quantify all isoforms in bulk using as input the scRNA-seq bam files provided. 

For the analysis of multiple samples, isoform expression was averaged across all samples. 

Read preprocessing 

We processed all the input BAM files containing aligned and tagged scRNA-seq reads to 

discard artifacts and reads not supporting annotated transcripts. First, we used samtools 

v1.19.245 to split the input BAM files by chromosome using the command samtools view and 

converted them into BED files using bam2bed command from BEDOPS v2.4.4146. We 

included all reads in the bed file (option –all-reads) and split them into separate entries 

(option –split) if contained Ns in the CIGAR line (i.e. spliced reads). We used the function 

findOverlaps from GenomicRanges R package v1.50.047 to overlap the reads with the set of 

selected isoforms using default parameters. Given that all reads with the same cell barcode 

(BC) and unique molecular identifier (UMI) likely were generated from the same original RNA 

molecule, we grouped them into a unique fragment and jointly evaluated them during isoform 

quantification (Fig. S1). We defined the genomic coordinates of each fragment as the most 

5’ and 3’ coordinates of its associated reads. We discarded all the fragments overlapping 
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intronic and intergenic regions except those extending the 3’ end of the gene, and spliced 

reads not supporting annotated exon-exon junctions, as they were considered to come from 

pre-mRNAs or unannotated transcripts. To avoid biases in the quantification of the isoforms 

due to reads mapping to IP locations in the genome, we discarded all the fragments that 

could arise from these sites. For that purpose, we scanned the whole genome using a 

custom Perl script and identified putative IP locations as regions containing six or more 

consecutive adenosines in a window of 10 nucleotides. We discarded all the fragments 

located upstream from an IP site. In this case, we only considered IP sites located more than 

60 nucleotides upstream of an annotated 3’ end in the transcriptomic space. 

Quantification of isoforms at the single-cell level 

First, we used all genes with only one detected isoform to assess the empiric distance 

distribution of scRNA-seq reads with respect to annotated isoform 3’ ends. Considering 

defined intervals of 30 nt, we calculated the distribution of read 3’ends relative to annotated 

3’ends by dividing the number of distinct 3’ends in each bin in the transcriptomic space 

divided by the total number of 3’ends. Using this probability distribution, we assigned to each 

read a probability to come from a specific isoform based on its relative distance to the 3' end. 

Considering that each fragment is composed of one or more reads, we defined the 

probability of a fragment � to belong to an isoform � for a gene � as: 

���� | �� 	 
�,� �. � 
 ���� | ��
� � ��

 

where �� is the set of reads associated with the fragment �, ���� | �� is the probability that 

read � is associated to the isoform �, and 
�,� is the weight associated to the isoform � and 

gene � based on the pseudobulk quantification. 

We computed the weight 
�,� of an isoform � and gene � as  
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�,� 	 ����,�∑ ���	,�	 � 
�

 

where �� is the set of isoforms for the gene g and ����,� is the transcript per million counts 

of isoform � and gene � according to Salmon44. 

Hence, the probability of a set of fragments ��,� for gene � and cell � given a fixed set of 

isoforms �� and associated relative abundances values ��� is given by: 

����,� � ���  	  
 � ����� 
	 � 
�� � ��,�

�	
�,� 

where ��,� is a set of fragments for a gene � and cell �, ����� represents the probability of a 

fragment �  belongs to isoform �, and �	
�,� the isoform � relative expression for a gene � and 

cell �. 

Consequently, we estimated the isoform relative expression values ��� by maximizing the 

log-likelihood function using a standard Expectation Maximization (EM) algorithm. The 

maximum likelihood estimators �� for the isoform relative abundance values are given by: 

���,�  	  argmax

�,�

� log $ � ����� �	
�,�

	 � 
�

%
� � ��,�

 

For each gene g and cell c, the EM algorithm proceeds as follows: 

1. Initialization of value ��

�,�  for each isoform � of the gene g as 
�

|
�|
  

2. Iterate until convergence: 

a. E-step: Calculation of posterior probability for each fragment � &  ��,� to 

belong to the isoform � given that it comes from a gene � and a cell � as 

���� | � ' �� 	  ���� | � ' �� ��

�,�

∑ ���� | � ' �� �	
�,�

	 � 
�
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b. M-step: Estimate the isoform relative expressions ��

�,�  

��
�,�  	  ∑ ���� | � ' ��� � ��,� |��,�|  

The convergence state of the EM algorithm was settled by a stop criterion condition. This 

condition was reached when the maximum difference of the estimated relative abundance 

between two iterations was equal to 0.001. All the isoforms with a null weight value were 

discarded from the annotation set. To generate isoform expression values for the iDGE per 

gene the estimated isoform probabilities were multiplied by the UMI counts assigned to the 

into the original DGE (Fig. S1). 

Isoform entropy and gene information content calculation 

In order to deconvolute the DGE into an iDGE, SCALPEL estimates the isoform relative 

expression distributions for each gene and cell (θ, see above). Considering a fragment �( 
across the set of all the fragments F, we can define the conditional probability of fragment �( 
to originate from an isoform � given it comes from a gene � and cell � as: 

����� | � ' ��: 	 ∑ ����� | � � ���� � � |�| 	 ��

�,� 

where ��
�,� is the isoform � relative expression estimated by SCALPEL for gene � in cell �. 

Taking this into account, the probability of fragment �( to originate from isoform � of gene � 

given that it originates from cell � can be derived as 

����� | �� 	 ����� | � ' ������� | �� 
where the probability of fragment �( to originate from any isoform of gene � given it originates 

from cell � can be calculated from the iDGE as: 
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����� |�� 	 *+,�,�∑ *+,�,�� � �

	 ∑ -*+,	,�	 � 
�∑ -*+,	 ,�	� � 


 

Where *+,�,� denotes the number of UMIs assigned to gene � in cell c, + the set of all the 

genes, -*+,	,� the number of UMIs assigned to isoform � in cell c, � the set of all the 

isoforms across all the genes. 

Applying Bayes’ theorem, the probability of fragment �( to originate from cell � given it 

originates from isoform � can be derived as: 

�����|�� .	 ����� | �� ������������  

where the probabilities ������ of fragment � to originate from cell � and ������ of fragment � to 

originate from isoform � can be estimated from the iDGE corresponding column and row 

sum fractions, respectively. 

������ .	  ∑ *+,�,�� � �∑ ∑ *+,�,�� � �� � �

 	  ∑ -*+,�,�� � 
∑ ∑ -*+,�,�� � 
� � �

 

where / is the set of all the cells, and 

������ .	  ∑ -*+,�,�� � �∑ ∑ -*+,�,�� � �� � 


 

Given the cell to cell cluster mapping �:C↦L, where 0 is the set of all cell clusters, the 

probability of fragment �( to originate from a cell in cluster 1, given it originates from isoform � 

can be derived by summing up the corresponding cell probabilities: 

����1 | �� .	  � ����� | ��
� � ��

 

where /�  is the set of the cells associated to the cluster 1. 
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Based on those conditional probabilities, each isoform's entropy across cell cluster is defined 

as: 

2��� .	 3 � ����1 | �� log������1 | ��4
� � �

 

If all fragments originating from a given isoform originate from cells of the same cell type, the 

corresponding entropy is minimal, at a value of 

2��� 	 0 

bits. If an isoform � is expressed perfectly equal across all clusters, the maximum isoform 

entropy 

2��� 	 log�  |L| 
is reached, where |L| denotes the number of cells clusters. 

The isoform-level entropies were summarized to the gene level to quantify the randomness 

of a gene’s isoform distribution across cell types: 

7��� .	  � 2���
	 � 
�

 

While the minimal gene entropy 

7��� 	 0 

is gene-independent , its upper bound depends on the number of expressed isoforms |��| 
and thus differs across genes: 

7������  	  |��| 2��� 
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The difference from that maximum entropy defines a gene's information content across 

isoforms and cell types/clusters 

8��� .	 7������ 3 7��� 
Detection of differential isoform usage between cell clusters 

For the identification of differential isoform expression between clusters of cells, we 

implemented the function FindIsoforms. This function selects all genes with at least two 

isoforms expressed and performs a Chi-squared test to assess if the read distribution across 

isoforms in the same between clusters. In these analyses, all isoforms representing less 

than 10% of the expression of a gene in at least one condition were discarded. We selected 

significant DIU genes with a false discovery rate (FDR) < 0.05.  

Average 3’ UTR length calculation  

We extracted from the iDGE all protein-coding isoforms and computed the lengths of the 

corresponding 3’ UTR regions from the reference annotation. For each gene �, we 

calculated the gene average 3’ UTR length 9� in a cell � as  

9�,� 	  ∑ 9�� � 
�  -*+,�,�|��|  

where 9�  is the 3’ UTR length of isoform �, -*+,�,�are the UMI counts of isoform �. 

Next, we calculated the average weighted 3' UTR isoform length within each cell 9� for all 

the expressed isoforms as 

9�  	  ∑ 9�,�� � �|:|  

where : is the set of all genes with protein-coding isoforms expressed. 
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Generation of read coverage plots 

SCALPEL outputs a BAM file including the reads used for isoform quantification. Within 

SCALPEL framework, we have implemented the function CoveragePlot in R to visualize the 

read coverage on the isoforms using a transcriptome annotation in GTF format and BAM 

files. We generated the visualization tracks using the R Gviz library v1.46.048.  

Analysis of mouse spermatogenesis 10x scRNA-seq data 

We downloaded the 10x scRNA-seq samples from male mouse germline22 from GEO 

database (accession number GSE104556) and processed them using Cell Ranger v7.1.049, 

using mm10 mouse genome assembly50 and GENCODE M2143 as reference annotation. We 

merged the processed data and analyzed them jointly using Seurat v5.0.051. We restricted 

the analysis to the set of annotated cells from a previously study19. The final Seurat object 

contained 2,042 cells and 22,433 genes. We performed dimensionality reduction on the 

DGE using 2,000 genes as variable features and used the first 9 principal components (PCs) 

to build the kNN graph and compute a UMAP. We used the function FindClusters with a 

resolution of 0.03 to identify 3 clusters. We compared our clustering results with the cell 

clustering from the previous study on the same data by calculating a Jaccard Index score 

between the cell barcode tags clusters and annotated the defined cell clusters in our 

analysis as ES, RS and SC according to their previous corresponding annotation. Next, we 

filtered the input BAM file to retain the 2,042 annotated cells included in the previous 

analyses using samtools view -D CB from samtools v1.19.245 and extracted the DGE matrix 

for SCALPEL analysis. Following the execution of SCALPEL, we generated a Seurat object 

containing the same 2,042 cells, 19,797 genes and 70,793 isoforms. For downstream 

analyses, we discarded all isoforms expressed in less than four cells and cells with less than 

three isoforms expressed using CreateSeuratObject function (option min.cells=4, 

min.features=3). The final Seurat object included 40,750 isoforms of 16,752 genes. We 

performed dimensionality reduction on the iDGE using 2,000 isoforms as variable features, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.21.600022doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.21.600022
http://creativecommons.org/licenses/by-nc-nd/4.0/


and we used 11 PCs for the generation of the kNN graph for the UMAP. We used a 

resolution of 0.05 to perform the clustering and identified three cell populations. We used the 

approach described above to annotate the cell clusters. We compared the iDGE clusters 

with the DGE clusters using a Jaccard index. 

We increased the clustering resolution in the gene and the isoform-based analyses to 0.4 

and 0.9 respectively to identify new cell states. Using the markers from Lukassen et al. 22, 

we annotated the cell clusters of the gene-based analysis. For the isoform analysis, we 

calculated a Jaccard index score between all gene and isoform clusters (Fig. S2) and 

assigned to each isoform-based cluster the identity of the most similar cluster. We performed 

a differential isoforms analysis using FindAllMarkers function (option min.pct=3, 

p_val_adj<0.05) on the iDGE to identify isoforms markers for each cluster. We visualized the 

top 100 isoform markers average expression within each cluster in the iDGE using the 

Heatmap function from the ComplexHeatmap52 package along the average expression of 

their corresponding genes in the DGE clusters (Fig 1d).  

Differentiation and characterization of iPSCs and NPCs using Drop-seq technology 

We differentiated human iPSCs towards NPCs using a protocol previously established in the 

lab53,54. Briefly, we differentiated iPSCs to neuroepithelial cells over a period of ten days by 

dual SMAD inhibition using neural maintenance medium (1:1 ratio of DMEM/F-12 GlutaMAX 

(Gibco, #10565018) and neurobasal (Gibco, #21103049) medium complemented with 0.5x 

N-2 (Gibco, #17502048), 0.5x B-27 (Gibco, #17504044), 2.5 μg/ml insulin (Sigma, #I9278), 

100 mM L-glutamine (Gibco, #35050061), 50 μM non-essential amino acids (Lonza, #BE13-

114E), 50 μM 2-mercaptoethanol (Gibco, #31350010), 50 U/ml penicillin and 50 mg/ml 

streptomycin (Gibco, #15140122)) supplemented with 500 ng/ml noggin (R&D Systems, # 

3344-NG-050), 1 μM Dorsomorphin (StemCell technologies, #72102) and 10 μM SB431542 

(Calbiochem, # 616461). After the initial neural induction step, we differentiated the cells to 

NPCs by neural maintenance medium replacement up to day 22. We cryopreserved iPSCs 
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and NPCs in fetal bovine serum or neural maintenance medium supplemented with 10% of 

DMSO for iPSC or NPCs respectively. Before single-cell encapsulation using NADIA 

instrument (Dolomite Bio), we thawed, filtered and counted the samples. We retrotranscribed 

RNAs captured with the oligo(dT) for cDNA library preparation. Finally, we sequenced the 

final Illumina tagged libraries on an Illumina NextSeq 550 sequencer using the NextSeq 550 

High Output v2 Kit (75 cycles) (Illumina, #20024906) in pared-end mode; read 1 of 20 bp 

with custom primer Read1CustSeqB55, read 2 of 64 bp and 8 bp for i7 index. 

scRNA-seq analysis of Drop-seq data 

We processed the iPSC and NPC scRNA-seq libraries using Drop-seq tools v2.5.155 pipeline 

to generate DGE matrices. We merged the FASTQ files containing paired end reads into a 

single unaligned BAM file using Picard tools v2.27.456. We tagged the reads with cell and the 

molecular barcodes, trimmed them at the 5’ end to remove adapter sequences and at the 3’ 

end to remove polyA tails, and mapped them to the human genome (GRCh38) with STAR 

v2.7.1057. We tagged the resulting BAM files with the annotation metadata using the human 

GENCODE v4158 annotation as reference. Finally, we performed the cell barcode correction 

using the programs DetectBeadSubstitutionError and DetectBeadSynthesisErrors with 

default parameters. To estimate the number of cells obtained, we used a knee plot 

considering the top 3,000 cell barcodes and generated a DGE count matrix for each sample. 

We used Seurat v5.0.051 and R 4.3.259 to merge the DGEs and preprocess the scRNA-seq 

data. We discarded all genes expressed in less than four cells and all cells with less than 

three genes expressed. We also discarded low quality cells with less than 300 UMIs, less 

than 300 genes and more than 5% mitochondrial gene, and cell artifacts with more than 

20,000 UMIs and 7,000 genes. The final Seurat object contained 2,535 cells and 19,103 

genes. We performed a dimensionality reduction analysis using the 2,000 most variable 

genes to calculate 50 PCs. We used the ElbowPlot function to manually inspect the amount 
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of variability explained by each PC and selected the first 9 PCs to build the kNN graph and 

compute the UMAP plot. 

Trajectory inference analysis  

We used the iDGE-based Seurat object to derive a pseudo temporal ordering of the cells 

using Monocle3 v1.3.460. First, we converted the Seurat object into a CellDataSet object 

which includes the cluster annotation and the UMAP embedding previously computed. Next, 

we fit the principal trajectory graph within each cluster partition using the function 

learn_graph. Finally, we calculated the pseudotime values using the function pseudotime 

and the ES cells as root cells. 

GO term enrichment analysis 

We performed GO term enrichment analysis using the R package enrichR v3.261. The 

reference used for the enrichment analysis was the GO_Biological_Process_202362. We 

selected all the GO terms with an adjusted p-value inferior to 0.05 and visualized the 

associated adjusted p-value and enrichR combined scores using ggplot263. 

Identification of miRNA signatures in differentially regulated isoforms 

To obtain isoform-level identification of miRNA target sites, we overlapped the genome-wide 

miRNA target site annotation included in the MBS database36 with the GENCODE 

annotation reference v4158 (hg38). Target sites of different miRNAs were grouped by their 

seed sequences according to miRBase v22.164 The seed-target isoform pairs were used for 

downstream analyses. Using a set of neurogenesis-related miRNA34, we filtered genes 

displaying changes in isoform usage between iPSCs and NPCs as predicted by SCALPEL 

with at least one isoform targeted by a neurogenesis-related miRNA and one non-targeted 

isoform. We normalized the isoform abundances by the number of cells in NPCs and iPSCs 

and used these values to calculate their log2 fold changes (log2fcs). For each miRNA, we 
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used a Kolmogorov-Smirnov test to check for differences in the cumulative distribution of 

log2fcs between targeted and non-targeted isoforms from the same set of genes. The 

resulting p-values were FDR-adjusted using Benjamini-Hochberg correction. 

Isoform validation using nested PCRs 

To validate the changes of isoform usage between the iPSCs and NPCs predicted by 

SCALPEL, we performed nested PCR as previously described65,66. One µg of total mRNA 

extracted using Maxwell® RSC simplyRNA Cells kit protocol (Promega Corporation, 

#AS1340) was used as input RNA for the cDNA synthesis using an oligo(dT)-adaptor 

sequence TAP-VN as a primer for the reverse transcription. For the first nested PCR, one µL 

of 1:10 cDNA dilution was used, with a gene-specific primer (GSP) which is shared by all 

isoforms and an adaptor primer (AP) as a reverse primer. The second nested PCR was 

performed with one µL of a 1:10 dilution of the first PCR using a second gene-specific primer 

and a second adaptor primer (MAP) as a reverse primer. This second nested PCR reaction 

that anneals 3’ to the first GSP is essential to reduce the amplification of undesired 

products67. The resulting nested PCR products are resolved by an agarose gel. Primer 

sequences are provided in Supplementary Table 11. 

Benchmark analysis 

We downloaded each of the benchmarked tools from their respective GitHub repository. For 

each tool, all commands for its default execution were integrated into Nextflow workflows 

and were executed using the default parameters indicated by the authors. We performed the 

benchmark analysis on the preprocessed mouse spermatogenesis scRNA-seq22 data using 

the GENCODE vM2158 GTF and transcriptome FASTA files as reference annotation. 

Additionally, we performed a second benchmark analysis on the preprocessed neuronal cell 

differentiation scRNA-seq Drop-seq data using the analogous reference files obtained from 

GENCODE v41. As scAPA only considers disjoint 3'UTR regions annotation from the hg19 
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version of the human genome for the annotation of its quantified peaks, we generated a new 

annotation of non-overlapping 3'UTR regions using GENCODE v41 and GenomicRanges R 

package. We intersected all the peaks detected by scAPA19 following its peak calling 

process to this new reference annotation. Following Dapars2 v2.168 default procedure, we 

downloaded the gene region annotation reference for the human and mouse genome 

(GRCh38, mm10) using the UCSC Table browser. Then, we extracted 3’ UTR regions from 

the gene annotation using Dapars2 script DaPars_Extract_Anno. Finally, we calculated the 

raw percentage of distal PAS sites usage index (PDUI) values using Dapars2 script 

DaPars2_Multi_Sample_Multi_Chr and provided them to scDapars42 to infers their 

expression at single-cell level. scUTRquant20 was executed using the target transcriptome 

annotation files provided in the GitHub repository for the human and mouse genomes (hg38 

and mm10). These files included high-confidence cleavage sites called from the Human Cell 

Landscape and Mouse Cell Atlas dataset20. Additionally, we reran scUTRquant19 using a 

custom target transcriptomic annotation generated from the input genome annotation using 

the Bioconductor package txcutr69 (v1.8.0). For each tool, we performed a differential peak 

or isoform usage analysis with default parameters for all genes with at least two peaks or 

isoforms detected. As Sierra did not allow for the analysis of differential isoform usage 

across multiple cell types, we performed pairwise comparisons across the three cell types 

(ES-RS, RS-SC and ES-SC). Next, we compared the DIU genes between the iPSCs and 

NPCs for the neurogenesis Drop-seq dataset. We discarded all the DIU genes with an 

adjusted p-value greater than 10%. For each comparison test, we generated the UpSet plots 

using the R library UpSetR v1.4.070 for the set of DIU genes co-detected by at least two 

tools. We applied a cutoff threshold of 10 genes for each intersection set. 

Software used 

SCALPEL is implemented in Python and R59. We performed all the statistical tests in this 

manuscript using R v4.3.259. 
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Code availability 

The code of SCALPEL and the pipeline to benchmark all tools presented in this manuscript 

are available on GitHub (https://github.com/p-CMRC-LAB/SCALPEL). 

Data availability 

The Drop-seq data from iPSCs and NPCs generated within this project are available on 

GEO under accession number GSE268222. 
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Figure Captions 

Figure 1: SCALPEL pipeline quantifies transcript isoforms at the single-cell level. a. 

SCALPEL Nextflow pipeline diagram. SCALPEL is composed of 4 workflows performing 1) 

annotation preprocessing (black line); 2) read preprocessing to discard artifacts and reads 

derived from pre-mRNAs (blue line); 3) quantification of isoforms in individual cells (green 

line); and 4) characterization of differential isoform usage (orange line). b. Cell types 

identified using isoform expression estimated by SCALPEL (left) or gene expression (right). 

Both analyses identify the same three cell populations: spermatocytes (SC), round 

spermatids (RS), and elongated spermatids (ES). c. High resolution clustering using isoform 

expression (left) identifies novel cell states (RS6) that cannot be identified using gene 

expression data (right). d. Heatmap showing the expression of cluster markers identified in 

the isoform based analysis (left) and their corresponding genes (right). The expression of 

some of the top RS6 isoform markers (black box, left) is not recapitulated with gene 

expression. Isoform expression distinguishes clusters more clearly than gene expression. e. 

Scatter plot showing the cell-type expression specificity relative to gene expression for all 

genes with two expressed isoforms. The higher the information content of a gene, the more 

cell-type specific its expression is. Colored dots represent genes whose isoform expression 

usage changes across conditions (Chi-squared test adjusted p-value < 0.05) f, g. SCALPEL 

quantification of isoform usage from Gtsf1 (f) and Smg7 (g) genes. Coverage plots show the 

distribution of filtered reads along isoforms. Gtsf1 (f) is an example of a gene with high cell 

type specificity identified in e whose isoforms show the same relative usage across cell 

types during mouse sperm cell differentiation. Smg7 gene (g) has low cell type specificity as 

defined in e but significant changes in isoform usage across conditions. SCALPEL 

quantification and coverage plots show a gradual switch in isoform usage during the 

differentiation of SC to ES cells. h. Pseudotemporal ordering of cells confirms the overall 

shortening of 3’ UTRs during mouse sperm cell differentiation.  
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Figure 2. SCALPEL predictions on human Drop-seq data distinguish cell populations 

and provide insights into post-transcriptional regulatory mechanisms. a. UMAP plots 

based on isoform expression (left) and gene expression (right) similarly identify iPSCs (pink) 

and NPCs (blue). b. Cumulative distribution plot of log2fcs of isoforms containing miR-128-

5p target sites (red) or without them (blue) from the same genes, indicating that changes in 

isoform usage can be attributed to miRNAs known to be implicated in neurogenesis. c, e. 

SCALPEL identifies a significant change in isoform usage in EIF1 (c) and JPT1 (e) genes 

between iPSCs and NPCs. Coverage plots show the distribution of filtered reads along 

isoforms. d, f. Relative isoform expression changes predicted by SCALPEL between iPSCs 

and NPCs in EIF1 and JPT1 genes can be experimentally validated in bulk using 3’RACE.  

Figure 3. SCALPEL benchmark against existing tools for APA and isoform 

quantification at the single-cell level. a. Numbers of genes (grey), peaks (purple) and 

isoforms (sea green) quantified by each tool in the 10x mouse spermatogenesis dataset. 

scUTRquant has been run using the UTRome annotation (scUTRquant) and the same 

annotation as all other tools (scUTRquant*). b. Number of DIU genes between ES and RS 

cells (dark pink), RS and SC cells (green) and ES and SC cells (light blue). In all 

comparisons SCALPEL predicts more DIU genes than all other tools. c. Distribution of DIU 

genes between ES and SC according to their raw UMI counts split by quantiles (Q1: 4-37, 

Q2: 37-277, Q3: 277-1618, Q4: 1618-423964). Predicted DIU genes by all tools are mainly 

among highly expressed genes (Q3 and Q4 quartiles). d. Agreement in the identification of 

DIU genes between ES and SC clusters across all tools. 75% of DIU genes predicted by 

SCALPEL are also predicted by one or more of other tools. e. UpSet plot showing the 

agreement in the number of predicted DIU genes between ES and SC across all tools. All 

intersection sets including more than 10 genes are shown. f. Comparison of the CPU time vs 

the memory usage for the different tools. Except for scUTRquant, which uses an already 

processed annotation, SCALPEL is the most efficient tool of all the ones tested (less 

memory and CPU time used).  
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